
GEM++: a tool for solving substitution-tolerant
subgraph isomorphism

Julien Lerouge1, Pierre Le Bodic2, Pierre Héroux1, and Sébastien Adam1

1University of Rouen, LITIS EA 4108
BP 12 - 76801 Saint-Etienne du Rouvray, France

2H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

765 Ferst Drive NW, Atlanta, GA 30332, United States
{Julien.Lerouge,Pierre.Heroux,Sebastien.Adam}@litislab.eu

lebodic@gatech.edu

Abstract. The substitution-tolerant subgraph isomorphism is a partic-
ular error-tolerant subgraph matching that allows label substitutions for
both vertices and edges. Such a matching is often required in pattern
recognition applications since graphs extracted from images are gener-
ally labeled with features vectors computed from raw data which are
naturally subject to noise. This paper describes an extended version of
a Binary Linear Program (BLP) for solving this class of graph matching
problem. The paper also presents GEM++, a software framework that
implements the BLP and that we have made available for the research
community. GEM++ allows the processing of different sub-problems (in-
duced isomorphism or not, directed graphs or not) with complex labelling
of vertices and edges. We also present some datasets available for evalu-
ating future contributions in this field.

Keywords: binary linear programming, subgraph isomorphism, graph
matching toolkit, graph datasets

1 Introduction

Given a query and a target graph, the subgraph isomorphism problem consists in
deciding whether there exists a subgraph of the target which is isomorphic to the
query graph, i.e. there exists a one-to-one mapping between the vertices (respec-
tively the edges) of the query and the vertices (resp. the edges) of a subgraph of
the target. This theoretical problem has been the subject of many contributions
in the literature [1, 2, 8, 11–13] since it finds applications in various fields such
as biosciences, chemistry, knowledge management, social network analysis, scene
analysis... In the context of structural pattern recognition for image analysis, al-
gorithms targeting subgraph isomorphism are particularly useful since they can
be used to simultaneously consider segmentation and recognition of objects of
interest (the query graphs) in a whole image (the target graph).

Beyond its computational complexity (subgraph isomorphism is an NP-complete
problem [7]), a main drawback of existing approaches for subgraph isomorphism

2 J. Lerouge, P. Le Bodic, P. Héroux, S. Adam

is the requirement of a strict matching between the query graph and a sub-
graph in the target graph. Now, in pattern recognition applications, graphs to
be analyzed are usually affected by distorsions, that can result from the intrinsic
variability of patterns in the image, from the digitization procedure, or from
the graph construction steps. Among the possible distorsions, we are concerned
in this paper with modifications of vertices/edges labels. Hence, we tackle a
particular class of matching problem we call substitution-tolerant subgraph iso-
morphism. A subgraph isomorphism is said to be substitution-tolerant when
editing operations on vertices and edges labels are allowed at a given cost. The
graph topology remains unchanged.

In [9], we have considered the substitution-tolerant subgraph isomorphism
as an optimization problem, modeled with a Binary Linear Program (BLP). A
first formulation has been described and some tests have shown the efficiency
of the approach for a real world application concerning symbol detection. This
paper extends this work with three contributions. First, from a theoretical point
of view, we present two extensions to the previous formulation. They concern
(i) the handling of both directed or undirected graphs and (ii) the computation
of induced subgraph matching. The second contribution is related to the im-
plementation of the formulation in a framework called GEM++. The software
implements the BLP with the ability to tackle many graph labelling functions
(nominal, real, vectorial...) and to customize vertices and edges edit costs accord-
ing to these labellings. GEM++ is available online for the research community1.
Finally, we present some datasets dedicated to the evaluation of substitution-
tolerant subgraph isomorphism approaches. These datasets are free to use for
evaluating future contributions in this field.

The paper is organized as follows. Section 2 presents the extended formu-
lation, in order to introduce the description of the software toolkit GEM++
which is given in section 3. Then, in section 4, we describe synthetic and real
datasets dedicated to substitution-tolerant subgraph isomorphism. Finally, sec-
tion 5 draws a conclusion of the paper and proposes future directions.

2 Proposed formulations

2.1 Definitions

Definition 1. A graph G is a couple G = (VG , EG), where VG is a set of vertices
and EG ⊆ VG × VG is a set of edges. The graph G is said undirected if its edges
have no orientation, i.e. ∀(i, j) ∈ EG , (i, j) = (j, i) ∈ EG . Otherwise, G is a
directed graph.

Definition 2. Given S = (VS , ES) and G = (VG , EG) two graphs verifying
|VS | ≤ |VG|, an injective function f : VS → VG is a subgraph isomorphism from
a graph S to a graph G if and only if f verifies ∀ (i, j) ∈ VS × VS , (i, j) ∈ ES ⇒
(f(i), f(j)) ∈ EG .

1 http://litis-ilpiso.univ-rouen.fr/

GEM++: a tool for solving substitution-tolerant subgraph isomorphism 3

2.2 Binary linear programming

Binary linear programming, also known as 0-1 linear programming, is a restric-
tion of linear programming where the variables are binary. Hence, the general
form of a BLP is as follows:

min
x

cTx (1a)

subject to Ax ≤ b (1b)

x ∈ {0, 1}n (1c)

where c ∈ Rn, A ∈ Rn×m and b ∈ Rm are data of the problem. A solution of
this optimization problem is a vector x of n binary variables. A is used to ex-
press linear inequality constraints (1b). The objective function cTx is a linear
combination of all variables of x weighted by the components of the vector c.
The optimal solution is the one that minimizes the objective function (1a) and
respects constraints (1b) and (1c). Once equations (1a) to (1c) are correctly
formulated, the second step consists in implementing this model using a mathe-
matical solver. Given an instance of the problem, the solver explores the tree of
solutions with the branch-and-cut algorithm, and finds the best feasible solution,
in terms of the objective function optimization.

2.3 Solving the problem with a BLP

As shown in figure 1, the formulation of the substitution-tolerant subgraph iso-
morphism problem as a BLP implies the definition of two sets of variables:

– for each pair of vertices i ∈ VS and k ∈ VG , there is a variable xi,k, such that
xi,k = 1 if vertices i and k are matched together, 0 otherwise.

– for each pair of edges ij ∈ ES and kl ∈ EG , there is a variable yij,kl, such
that yij,kl = 1 if edges ij and kl are matched together, 0 otherwise.

i

j

k

l

GS

xi,l = 0

xj,k = 0

xi,k = 1

xj,l = 1

yij,kl = 1

Fig. 1: An example of matching

Using such variables, the objective function, i.e. the global cost for matching
S to a subgraph of G, is defined as follows:

min
x,y

∑
i∈VS

∑
k∈VG

cV (i, k) ∗ xi,k +
∑

ij∈ES

∑
kl∈EG

cE(ij, kl) ∗ yij,kl

 (2a)

4 J. Lerouge, P. Le Bodic, P. Héroux, S. Adam

where cV : VS × VG → R+ as well as cE : ES × EG → R+ are functions which
define the cost of associating vertices and edges.

The following constraints encode the substitution-tolerant subgraph isomor-
phism problem (see [9] for a justification of these constraints):∑

k∈VG

xi,k = 1 ∀i ∈ VS (2b)

∑
kl∈EG

yij,kl = 1 ∀ij ∈ ES (2c)

∑
i∈VS

xi,k ≤ 1 ∀k ∈ VG (2d)

∑
kl∈EG

yij,kl ≤ xi,k ∀k ∈ VG ,∀ij ∈ ES (2e)

∑
kl∈EG

yij,kl ≤ xj,l ∀l ∈ VG ,∀ij ∈ ES (2f)

2.4 Extensions

Induced subgraph isomorphism An induced subgraph isomorphism is a more
stringent problem, defined by :

Definition 3. Given S = (VS , ES) and G = (VG , EG) two graphs verifying
|VS | ≤ |VG|, an injective function f : VS → VG is an induced subgraph isomor-
phism from a graph S to a graph G if and only if ∀ (i, j) ∈ VS×VS , (i, j) ∈ ES ⇔
(f(i), f(j)) ∈ EG .

The equivalence in definition 3 requires an additional set of constraints in
the BLP : ∑

i∈VS

xi,k +
∑
j∈VS

xj,l −
∑

ij∈ES

yij,kl ≤ 1 ∀kl ∈ EG (2g)

Undirected graphs If S and G are undirected graphs, the set of constraints
(2e) and (2f) are respectively modified into (2h) and (2i) and, if necessary, the
set of constraints (2g) is modified into (2j) :∑

kl∈EG

yij,kl ≤ xi,k + xj,k ∀k ∈ VG ,∀ij ∈ ES (2h)

∑
kl∈EG

yij,kl ≤ xj,l + xi,l ∀l ∈ VG ,∀ij ∈ ES (2i)

∑
i∈VS

(xi,k + xi,l) +
∑
j∈VS

(xj,l + xj,k)−
∑

ij∈ES

yij,kl ≤ 1 ∀kl ∈ EG (2j)

GEM++: a tool for solving substitution-tolerant subgraph isomorphism 5

2.5 Search for multiple solutions

Depending on the application context, it may be the case that the query graph
that is searched for has many instances in the target graph. As defined in section
2, the BLP model is only able to find the optimal solution. There are multiple
ways to search for many solutions [3]. In the context of our study, we have chosen
to call iteratively the model and to discard the successive optimal solutions after
each call. Such a solution is linear in the number of instances. We implemented
three different strategies to discard an optimal solution. After each iteration,
given the optimal solution (x̄ ȳ)T , our algorithm may perform one of the following
cut by adding the corresponding constraint to the BLP:

– cut exactly the optimal solution:∑
i∈VS ,k∈VG

x̄i,k · xi,k ≤ |VS | − 1 (3a)

– cut any solution containing a matching between vertices (or edges) of S and
G present in the optimal solution:∑

i∈VS ,k∈VG

x̄i,k · xi,k = 0 (3b)

– cut any solution involving a vertex (or an edge) of G already matched to a
vertex (edge) of S in the optimal solution:

∑
i∈VS ,k∈VG

∑
j∈VS

x̄j,k

 · xi,k = 0 (3c)

The new constraint, that cuts the current optimal solution, is added to the
model. Hence, this solution becomes infeasible for the next run. The solver can
be called again and will be able to find, if it exists, another optimal solution.

3 GEM++

GEM++ is a Graph Extraction and Matching software that we developed in
order to implement the subgraph matching approach described in section 2. It is
written in C++ and is multiplatform. The framework is composed of shared soft-
ware libraries, that gathers the common functionalities provided by our frame-
work (graphs and weights handling, integer programming, call to a mathematical
solver), and the command-line utility GEM++sub, that solves our subgraph iso-
morphism problem.

3.1 Graphs and substitution costs

GEM++ is able to import directed or undirected, labeled or unlabeled graphs,
formatted either in Graph Modeling Language (GML) or in Graph eXchange
Language (GXL). Figure 2 shows two examples of directed labeled graphs. The
target graph is transcripted in GXL and GML formats in listings 1.1 and 1.2.

6 J. Lerouge, P. Le Bodic, P. Héroux, S. Adam

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>
2 <gxl>
3 <graph id=”query” edgemode=”d i r e c t ed”>
4 <node id=”a”><a t t r name=”x”>< f l o a t >0.9</ f l o a t ></attr></node>
5 <node id=”b”><a t t r name=”x”>< f l o a t >0.3</ f l o a t ></attr></node>
6 <edge from=”a” to=”b”><a t t r name=”y”>< f l o a t >0.4</ f l o a t ></attr></edge>
7 <edge from=”b” to=”a”><a t t r name=”y”>< f l o a t >0.2</ f l o a t ></attr></edge>
8 </graph>
9 </gxl>

Listing 1.1: GXL example (query.gxl)

1 graph [
2 l a b e l ” t a r g e t ”
3 d i r e c t ed 1
4 node [id 0 x 0 .5]
5 node [id 1 x 0 .7]
6 node [id 2 x 0 .4]
7 edge [source 0 t a r g e t 1 y 0 .6]
8 edge [source 1 t a r g e t 2 y 0 .1]
9 edge [source 2 t a r g e t 1 y 0 .8]

10]

Listing 1.2: GML example (target.gml)

1 node s f e a tu r e s we i gh t s
2 x 1 .0
3 edg e s f e a t u r e s we i gh t s
4 y 2 .0

Listing 1.3: Feature
weights (weights.fw)

a b

0.9 0.3

0 1 2

0.5 0.7 0.4

Target graph
0.4

Query graph

0.2

0.6
0.1

0.8

Fig. 2: An instance of the substitution-tolerant subgraph isomorphism problem

In order to tune the substitution costs cV and cE introduced in equation
(2a), we defined a weighted euclidean distance on vertices and edges labels. Let
us define µ : VS ∪ VG → LV and ξ : ES ∪ EG → LE the functions that assign
labels to each vertex and each edge of S and G. The vertices and edges label
spaces LV and LE may be composed of any combination of numeric (real) and
symbolic attributes. As symbolic attributes are taken from discrete sets, for the
sake of simplicity, we transform them into strictly positive integers. Therefore,
we have for the vertices LV = Rm× (N∗)n, with m ≥ 0 and n ≥ 0. Let us define
µR : VS ∪ VG → Rm and µN∗ : VS ∪ VG → (N∗)n, such that ∀v ∈ VS ∪ VG , µ(v) =
(µR(v), µN∗(v)). Let w = (w1, . . . , wm) ∈ Rm and z = (z1, . . . , zn) ∈ {0; 1}n be
two vectors of weights, the vertex substitution cost cV is defined as follows:

cV (i, j) =

{
∞ if ∃k ∈ [[1;n]], zk = 1 and µN∗(i) 6= µN∗(j),√∑m

k=1 wk
2(µR(i)k − µR(j)k)2 otherwise.

The binary z weights are used to ignore some symbolic attributes. The same
system is applied to the edge substitution costs. The listing 1.3 gives an example
of a feature weights configuration file for vertices and edges.

GEM++: a tool for solving substitution-tolerant subgraph isomorphism 7

3.2 Installation, solvers and usage

For Ubuntu or Debian-based Linux distributions, we provide pre-compiled pack-
ages of GEM++ in .deb format for x86 and x64 architectures. We also provide
a Windows installer for 64 bits systems.

In order to solve the formulation, GEM++ relies on mathematical program-
ming solvers. GEM++ is compatible with Gurobi2 and IBM CPLEX3, two
widespread and performant commercial solvers. Gurobi and IBM provide free
academic licenses for their solvers. GEM++ is also compatible with the GNU
Linear Programming Toolkit4 (GLPK), a free-software part of the GNU Project,
available in the package repositories of Debian and Ubuntu.

The GEM++ package provides the GEM++sub command-line utility. Provided
a couple of graphs and label substitution weights, GEM++sub is able to solve both
substitution-tolerant and exact subgraph isomorphism problems. The available
options for the command are summed up in the table 1.

Complete name Short Argument Effect

--weights -w file.fw Configures the weights for substitution costs

--solution -o file.sol Outputs the matching solution(s)

--induced -i Performs induced subgraph isomorphism

--number -n integer Searches up to n solutions

--cut -c cut strategy Switch to the given cut strategy

--solver -s solver name Switch to the given solver

Table 1: Command-line options offered by GEM++

3.3 Example

Let us run a solving example of the substitution-tolerant subgraph isomorphism
problem, taking the query and target graphs showed in figure 1 as input of the
problem. As the topology must be preserved while matching the query graph
to a subgraph of the target graph, the only two feasible solutions are s1 ={
a→ 1
b→ 2

∣∣∣∣ ab→ 12
ba→ 21

}
and s2 =

{
a→ 2
b→ 1

∣∣∣∣ ab→ 21
ba→ 12

}
.

Let us use the weights defined in the listing 1.3, i.e. wx = 1 and wy = 2.
Then, the overall costs of the solutions s1 and s2 are 2.1 and 1.9 respectively,
and s2 is the optimal solution. This solution can be discarded using strategy (3a)
or (3b), in either case the algorithm will find s1 as optimal solution at the second
iteration. However, the use of strategy (3c) would forbid any new solution, since
vertices 1 and 2 were already matched in s2.

2 http://www.gurobi.com
3 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
4 http://www.gnu.org/software/glpk

8 J. Lerouge, P. Le Bodic, P. Héroux, S. Adam

Here is the command that must be run on a terminal to retrieve the two
solutions in a file named output.sol (see listing 1.4), using the default (3a) cut
strategy :

$ GEM++sub -o output.sol -w weights.fw -n 2 query.gxl target.gml

1 So lu t i on {
2 ob j e c t i v e value : 1 . 9
3 nodes s ub s t i t u t i o n {
4 a 2 0 .5
5 b 1 0 .4
6 }
7 edges s ub s t i t u t i o n {
8 a−>b 2−>1 0 .8
9 b−>a 1−>2 0 .2

10 }
11 }

12 So lu t i on {
13 ob j e c t i v e value : 2 . 1
14 nodes s ub s t i t u t i o n {
15 a 1 0 .2
16 b 2 0 .1
17 }
18 edges s ub s t i t u t i o n {
19 a−>b 1−>2 0 .6
20 b−>a 2−>1 1 .2
21 }
22 }

Listing 1.4: Output example (output.sol)

If we had used different feature weights, e.g. wx = 1 and wy = 1, the overall
costs of the solutions s1 and s2 would have been 1.2 and 1.4 respectively, and
thus the first optimal solution would have been s1 instead of s2. Therefore, the
weighting system allows the user to tune the substitution costs in order to match
the application needs.

4 Datasets

Although some datasets have been proposed to evaluate exact subgraph iso-
morphism [4, 6], to the best of our knowledge there are no datasets designed
to benchmark the search of substitution-tolerant subgraph isomorphism. In this
section, we present two datasets designed for that purpose and made available
for the community.

4.1 Synthetic datasets

The synthetic dataset is composed of four subparts. Each of these datasets con-
tains pairs of graphs. One member of the pair is the query graph and the other
is the target graph. For each graph pair, a groundtruth information gives the
mapping between each vertex in the query graph to the corresponding vertex in
the target graph.

ILPIso exact synth and ILPIso noisy synth datasets have been generated
using the Erdös-Rényi model [5] which generates random graphs given n, the
number of vertices, and p, the probability that two vertices u and v are linked
with an edge (u, v). ILPIso exact connected synth and ILPIso noisy connec-

ted synth datasets have been generated with a model, also parameterized with
n and p, with the same meaning, but the model used warrants that generated
graphs are connected. The procedure used to generate graph pairs was the fol-
lowing:

GEM++: a tool for solving substitution-tolerant subgraph isomorphism 9

1. The query graph in generated with a specific graph model generator.
2. A copy of the query is created.
3. In the noisy versions, vertex/edges labels are added a Gaussian noise.
4. The copy is completed to the desired size of the target graph.

Labels for vertices and edges are scalar values randomly drawn in [−100, 100]
according to a uniform distribution. For the noisy versions, labels are added a
random number drawn from a Gaussian distribution (m = 0, σ2 = 5).

Finally, each graph pair is parameterized by p, the probability of existence
of an edge, np, nt, which respectively denotes the number of vertices in the query
graph and in the target graph. For ILPIso exact synth and ILPIso noisy synth

datasets, parameters are such that p ∈ {0.01, 0.05, 0.1}, np ∈ {10, 25, 50} and
nt ∈ {50, 100, 250, 500}. For ILPIso exact connected synth and ILPIso noisy

connected synth datasets, the same values are used for np and nt. p is chosen
in {0.02, 0.05, 0.1} but according to the value of np, the connectivity constraint
prevents to select too low values of p.

4.2 Real datasets

This ILPISO real dataset is composed of 16 query graphs and 200 target graphs.
These graphs respectively describe structural representations of architectural
symbols and architectural flooplans from the SESYD dataset5 in which these
symbols appear in their context. The extraction of this graph representation is
detailed in [10]. Basically, a vertex is associated to each white connected compo-
nent of the image of the plan or symbol, and an edge is created between vertices
representing adjacent white regions. The features that are used to label vertices
are mainly shape descriptors (24 first Zernike moments), whereas edges are la-
beled with feature vectors that characterize the relationship between adjacent
regions (relative scale and distance).

Considering their structural representations, the problem of locating occur-
rences of symbols on a floorplan turns into the search of subgraphs of the target
graphs that are isomorphic with query graphs representing symbols. Each sym-
bol may occur once or several times on a floorplan, or may not occur at all.
For each target graph representing a flooplan, the groundtruth information pro-
vides the identifiers of vertices that are involved in the symbol occurrence. The
whole ILPISO real dataset contains 5609 symbol occurrences with an average of
28 occurrences per target graph. The graphs corresponding to symbol instances
contain 4 vertices and 7 edges on average, whereas the structural representations
of the plans contain 121 vertices and 525 edges on average.

5 Conclusion

In this paper, we have presented GEM++, a software which implements a BLP
for the search for substitution-tolerant subgraph isomorphism. This work is an

5 http://mathieu.delalandre.free.fr/projects/sesyd/

10 J. Lerouge, P. Le Bodic, P. Héroux, S. Adam

extension of [9], which now allows to handle undirected graphs, numeric and
symbolic attributes, feature weighting, and induced sugraph isomorphism. The
tool is available online, has been designed to be easily installed on several operat-
ing systems and may be customized at several levels. In particular, it can be used
in conjuction with several mathematical solvers. We also provide synthetic and
real graph datasets specifically designed for the problem of substitution-tolerant
subgraph isomorphism. Our future works concern the tuning of the weights w
and z, the vectors which define the relative weights between attributes in the
substitution cost. They could be determined by a learning phase aiming at op-
timizing the performance on a validation set. Moreover, this work could also be
continued by integrating tolerance to topological modifications.

References

1. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the
VF graph matching algorithm. In: Proc. of the Int’l Conf. on Image Analys. and
Proc. pp. 1172–1177 (1999)

2. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. on PAMI 26(10), 1367–1372 (2004)

3. Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for
mixed integer programming problems. In: Proc. of the 12th Int’l Conf. on Integ.
Prog. and Combinat. Optim. pp. 280–294 (2007)

4. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and
its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett.
24(8), 1067–1079 (2003)

5. Erdös, P., Rényi, A.: On random graphs. Public. Mathemat. 6, 290–297 (1959)
6. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and sub-

graph isomorphism benchmarking. In: Proc. Third IAPR TC-15 Int’l Workshop
Graph Based Representations. pp. 176–187 (2001)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman & co. (1979)

8. Ghahraman, D.E., Wong, A.K.C., Au, T.: Graph optimal monomorphism algo-
rithms. IEEE Transactions on System, Man and Cybernetics 10, 181–188 (1980)

9. Le Bodic, P., Héroux, P., Adam, S., Lecourtier, Y.: An integer linear program
for substitution-tolerant subgraph isomorphism and its use for symbol spotting in
technical drawings. Pattern Recognition 45(12), 4214–4224 (2012)

10. Le Bodic, P., Locteau, H., Adam, S., Héroux, P., Lecourtier, Y., Knippel, A.:
Symbol detection using region adjacency graphs and integer linear programming.
In: Proc. of the Int’l Conf. on Doc. Analys. and Recog. pp. 1320–1324 (2009)

11. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intel-
ligence 174(12-13), 850 – 864 (2010)

12. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

13. Wong, A.K.C., You, M., Chan, S.C.: An algorithm for graph optimal monomor-
phism. IEEE Transactions on System, Man and Cybernetics 20(3), 628–638 (1990)

